高压变频同步电机励磁
高压变频是指同步电机励磁与高压变频合二为一,实现了投励后并入高压变频的功能。腾辉电气高压变频是所有电子电气行业里水平的集成,可实现自由调速的高压变频系统。在大型电力,钢铁,石化,空分均要对于1000-5000KW风机进行调速,调节风量,节能效果非常不错。
为什么变频器的输出电压与频率成比例的改变?
异步电动机的转矩是电机的磁通与转子内流过的电流之间相互作用而产生的,在额定频率下,如果电压一定而只降低频率,那么磁通就过大,磁回路饱和,电机电流增大,严重时将烧毁电机。因此,频率与电压要成比例地改变,即改变频率的同时控制变频器的输出电压,使电动机的磁通保持一定,避免磁饱和现象的产生。这就是VVVF的定义。这里的电压指的是电机的线电压或者相电压的有效值。
电动机使用工频电源驱动时,电压下降则电流增加;对于变频器驱动,如果频率下降时电压也下降,那么电流是否增加频率下降(低速)时,如果输出相同的功率,则电流增加,但在转矩一定的条件下,电流几乎不变。
通用型高压变频器从拓扑结构上说,主要分为单元串联多电平型、PWM电流源型、三电平型、负载换流型(LCI)几个大类。
1.单元串联多电平型
此种变频器采 用多个低压的功率单元串联实现高压,输入侧的降压变压器采用移相方式,可有效消除对电网的谐波污染,输出侧采用多电平正弦PWM技术,可适用于任何电压的 普通电机,另外,在某个功率单元出现故障时,可自动退出系统,而其余的功率单元可继续保持电机的运行,减少停机时造成的损失。系统采用模块化设计,可迅速 替换故障的功率单元,这样用户如果有备用的单元,则可以自行进行维护。这种变频器可以根据用户的电压决定串联单元数目的多少,可以实现任意的电压输出,因 此对于改造项目非常适宜。单元串联多电平型变频器在我国市场上新售的变频器中占绝大多数。
单元串联多电平型变频器实现能量回馈比较复杂(每个单元都要实现),目前也有国内厂家在进行尝试,并有样机推出。
2.PWM电流源型
电流源型逆变部分采用SGCT直接串联解决耐压问题,直流部分用电抗器储存能量,目前的技术水平可以做到7.2kV输出电压,所以适应国内大部分电压 为 6kV这一现状。电流源型变频器输入侧采用晶闸管整流,功率因数比较低;后来,开发出了双PWM型式,用SGCT整流,解决了这个问题,并将电网侧的变压 器用电抗器代替。电流源型变频器依据电网的相位进行整流控制,对电网的波动比较敏感;由于采用电流控制,输出滤波器的设计比较麻烦,而两电平变频器的共模 电压和谐波、dv/dt问题较**,所以对电机的要求较高。电流源型变频器有可回馈能量的优点,在需要快速制动的场合有竞争优势。电流源型变频器的成本较 高。
3.三电平型变频器
三电平型变频器采用钳位电路,解决了两只功率器件的串联的问题,并使相电压输出具有三个电平。三电平逆变器的主回路结构环节少,虽然为电压源型结构, 但易于实现能量回馈。三电平变频器在国内市场遇到的难题是电压问题,其输出电压达不到6kV,而国内的电网大多是6kV和10kV。目前,ABB 公司推出的ACS5000系列,实际上是三电平变频器与单元串联多电平变频器的结合,每个单元都是三电平的桥臂,而只有一级单元串联。这种结构解决了 6kV电机调速的需要,成本较高,只在大功率场合有竞争优势。
4.LCI(负载换流变频器)
这种变频器,实际上是电流源型变频器,采用晶闸管整流和逆变,电抗器作为储能环节。由于晶闸管不能自关断,因此必须依靠负载电机的反电势,电机一般都 使用同步电机。这种变频器一般仅适用于**大功率的电机,在国内应用较多的是大型电机的启动,如高炉风机、烧结风机的软启动等;电机启动成功以后,投入工频 电网运行,变频器则退出运行。
通用型高压变频V/f模式是什么意思?
频率下降时电压V也成比例下降,这个问题已在回答4说明。保持V/f比恒定控制是异步电机变频调速的基本的控制方式,它在控制电机的电源频率变化的同时控制变频器输出的电压,并使二者之比V/f为恒定,从而使电机的磁通保持恒定。在电机额定运行情况下,电机的定子电阻和漏抗的电压降比较小,电机的端电压和电机的感应电势近似相等。
V/f比恒定控制存在的主要问题是低速性能较差。其原因一是低速时异步电机定子电阻电压降所占比例变大,已不能忽略,不能再认为定子电压和电机感应电势近似相等,仍按V/f比一定控制已不能保持电机磁通恒定。电机磁通的减小必然造成电机的电磁转矩减小;另外变频器功率器件的死区时间也是影响电机低速性能的重要原因,死区时间造成电压下降同时还会引起转矩脉动,在一定条件下还会引起转速、电流的振荡。
V/f比恒定控制常用于通用变频器上。这类变频器主要用于风机、水泵的调速功能,以及对调速范围要求不高的场合。V/f比恒定控制的**优点是可以进行电机的开环速度控制。